Peer-Reviewed Publications since 2006                                                                                                 Back to the homepage of Azita Mayeli

  1. (with Bradley Currey and  Vignon Oussa), Sampling and Interpolation on Certain Nilpotent Lie Groups, to appear in IEEE Sampling, 2015.
  2. (with A. Iosevich), Exponential bases, Paley-Wiener spaces, and applications; Journal of Functional Analysis, Volume 268, Issue 2, 15 January 2015, Pages 363--375.
  3. Unified Littlewood-Paley decomposition of abstract Besov spaces; to appear in Proceeding of American Mathematical Society, ID PROC12485
  4. (with B. Currey and V. Oussa), Decompositions of Generalized Wavelet Representations; to appear in Contemp. Math. series of AMS.
  5. (with B. Currey and V. Oussa), Characterization of shift-invariant spaces on a class of nilpotent Lie groups with applications; Journal of Fourier Analysis and Applications, April 2014, Volume 20, Issue 2, pp 384-400. 
  6. (with D.Barbier and E. Hernandez) Bracket map for Heisenberg group and the characterization of cyclic subspace; Applied and Computational Harmonic Analysis, Volume 37, Issue 2, September 2014, Pages 218--234.
  7. (with V. Oussa) Regular Representations of Time-Frequency Groups;  Mathematische Nachrichten, Volume 287, Issue 11-12, pages 1320–1340, 2014. 
  8. (with M. Razani), Multiplexing and demultiplexing Frame Pairs; to appear in Contemprory Mathematics, Nov. 2013.
  9. (with B. Currey), The orthonormal dilation property for abstract Parseval wavelet frames; Canadian Mathematical Bulletin, 56(2013), 729-736.
  10. (With J. Christensen, G. Olafsson) Coorbit description and atomic decomposition of Besov spaces; Numerical Functional Analysis and Optimization, pages 847-871, 24 pages, (2012).
  11. (with H. Führ), Homogeneous Besov spaces on stratified Lie groups and their wavelet chracterization;  The Journal of Function Spaces and Applications, Volume 2012, Article ID 523586, (2012), 41 pages
  12. (with B. Currey), A density condition for interpolation on the Heisenberg group; (arXiv), Rocky Mountain Journal of Mathemathics, Volume 42, Number 4 (2012), pages 1135-1151, 17 pages,
  13. (with S.Scodeller, O.Rudjord, F.K.Hansen, D.Marinucci, D. Geller) Introducing Mexican needlets for CMB analysis: Issues for practical applications and comparison with standard needlets, The Astrophysical Journal, Vol. 733, No. 2, (2011). 
  14. (with B. Currey), Gabor fields and wavelet sets for the Heisenberg group; Monatsh. Math. (2011), 162:119-142.
  15. (with D. Geller), Nearly tight frames for spin wavelets on the sphere; Sampl. Theory Signal Image Process. 9 (2010),  25-57.
  16. Asymptotic uncorrelation for generalized mexican needlets;J. Math. Anal. Appl.  (2010), Pages 336-34. 
  17. (with D. Geller), Besov spaces and frames on compact manifolds; (arXiv) Indiana Univ. Math. J.  58 (2009),  2003-2042. 
  18. (with D. Geller), Nearly tight frames and space-frequency analysis on compact manifolds;Math. Z. 236 (2009), no. 2, 235-264
  19. (with D. Geller), Continuous wavelets on compact manifolds; Math. Z. 262 (2009), no. 4, 895--927
  20. Shannon multiresolution analysis on the Heisenberg group; J. Math. Anal. Appl. 348 (2), 671-684, (2008)
  21. (with D. Geller ), Continuous wavelets and frames on stratified Lie groups I.; J. Fourier Anal. Appl. 12 (5), 543-579, (2006)
  22. Continuous and Discrete Wavelet Transformations on the Heisenberg Group; (Ph.D thesis in English) accepted by Technische Universität München, Germany in April 2006.
Preprints/papers submitted 
  1. (with D.Barbier and E. Hernandez) Tiling by lattices for locally compact abelian groups, submitted. 
  2. (with Alex Iosevich and Jonathan Pakianathan) The Fuglede Conjecture holds in ${\Bbb Z}_p \times {\Bbb Z}_p$, submitted
  3. Azita Mayeli, Identification of Besov spaces via Littlewood-Paley-Stein g-type functions, submitted
  4. Azita Mayeli, Space-Frequency localized wavelets for spherical Besov spaces on the Heisenberg group. Link:
  5. Azita Mayeli, Paley-Wiener decomposition of Besov spaces and applications, preprint 

  6. Azita Mayeli, Mexican wavelet on the Heisenberg group, 2008. Link:
Ongoing Projects
  1. (with Alex Iosevich, Allen Liu and Jonathan Pakianathan) Exponential bases and Paley-Wiener spaces in ${\Bbb Z}_p^d$, in preparation
  2. Invariant subsapces under the action of automorphisms, with Davide Barbier and  Eugenio Hernandez 
  3. Wavelet type frames, with Eugenio Hernandez
  4. Titling properties and exponential bases with Alex Iosevich and Jonathan Pakianathan
Book chapter. 
  1. Azita Mayeli and Daryl Geller, Wavelets on Manifolds and Statistical Applications to Cosmology; title of the book: Wavelets and Multiscale Analysis, Theory and Applications,published by Birkhaeuser, 2011.
Books and Conference Proceedings
  1. Alex Iosevich, Azita Mayeli, Steven Senger, Fourier bases: an elementary viewpoint on a variety of applications (in preparation)
  2. Jens Christensen, Susanna Dann, Azita Mayeli, Gestur Olafsson, Harmonic Analysis and its Applications, AMS Contemporary Mathematics Volume, in print
  3.  Azita Mayeli, Alex Iosevich, Palle T. Jorgensen, and Gestur Olafsson, Commutative and Noncommutative Harmonic Analysis and Applications, AMS, Contemporary Mathematics, Vol. 603, 2013. ISBN-10: 0-8218-9493-5 Link:
  4. Azita Mayeli, Continuous and Discrete Wavelet Transformations on the Heisenberg Group; published by Technische Universitaet Muenchen Press (Technical Univesrity of Munich), Germany 2006.  
Some notes for my students
  1. Poisson formula for locally compact abelian groups.

last updated: August 25, 2015

free website hit counter code